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Abstract.  

The content of this paper describes the model and control of an elastic joint driven by fluidic 
muscles including the nonlinear behavior of the fluidic muscle, the valves and the joint 
dynamics. Such elastic joints have a lot advantages like passive compliance, low power to 
weight relation. The control of the joint is developed with the help of a professional software 
tool named EICASLAB which has been realized within the ACODUASIS Project founded by 
the European Commission in the frame of the Innovation Program aiming at transferring to the 
robotics sector the EICAS methodology  
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1 Introduction 

The FZI at the University of Karlsruhe started 2000 to use fluidic muscle as actuators for robotic 
system [6]. This is motivated by the fact of building biologically inspired robots. In order to 
take advantage from nature not only the mechatronical parts, but also the actuators should be 
imitated. It is obviously that artificial muscles as actuator are the nearest models of the 
biological actuator. By using artificial muscles in robotics one can use the analogy of the 
biological motor for locomotion or manipulation. There are a lot of advantages like the passive 
damping and good power-weight ratio. Because of this about ten years ago a lot research groups 
started to study artificial muscles. The most common used muscles are fluidic muscles like the 
well known McKibben muscle. But there are still only few robots actuated with such muscles 
and the interest in control theory for such systems is decreasing. The major problem is that the 
control of these actuators is much more complicated than the control of electrical motors, (e.g. 
the need for two antagonistic muscles for each joint). Due to the compressed air it is hardly 
possible to build autonomous robots. A different problem is that nearly every robotic control 
algorithm was designed for electrical motor as actuator using classical control methods and the 
mechanical set-ups are also designed for electrical motors. Another problem is the strongly 
nonlinear properties of the muscles.  
In all cases of use of fluidic muscles as actuator control is a big issue because of the elastic 
behaviour of these muscles [2, 3, 4]. Nevertheless in future ’soft’ actuators are needed for robots 
which interact with humans or in human environments.  
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At the moment fluidic muscles have been used at the University of Karlsruhe for walking 
research with the sixed legged robot AirBug [6] and the test-leg for the four legged mammal 
like robot PANTER (Fig. 1) [7]. Right now, only joint-controller are used for walking instead of 
controller for the whole legs.  

    
Fig. 1. (left) Six legged robot AirBug driven by fluidic muscles, (right) Test-Leg for the 

quadruped running PANTER-robot  

 

Different assumption can be defined for leg-joints for walking-machines due to the fact, that 
walking is a cyclic motion. There are two different walking-phases the power phase and the 
return phase. During power phase the leg holds and pulls the robot. There may be interacting 
forces between the legs with ground contact and large disturbance torques. During the return 
phase the leg to perform a fast motion from the last point of the past power phase to the first 
point of the next power phase.  
The desired walking behaviour makes great demands on joint-controllers for walking machines. 
Due to this the software tool EICASLAB [1] was used to find and test joint-controller. With the 
help of EICASLAB it is possible to use automated algorithm and code generation. For the set up 
of the controller and for modelling the control problem in simulation it is necessary to have an 
accurate model of the joint which should be controlled.  

2 Fine model of a joint driven by fluidic muscles 

The fine model of a general test-rig for elastic joints (see Fig. 2) is introduced, so that the found 
controller can be easily adapted to an elastic actuated robot joint. 
To find the equation of motion for the joint the Euler-equation is used:  

MusA A A MusB B B 0 g s

l
r F ( , , p ) r F ( , , p ) cos( ) F f l

2
J ϕ = − ⋅ κ κ + ⋅ κ κ − ϕ − ϕ ⋅ ⋅ + ⋅⋅ && & &  (1) 

with joint inertia J , muscle forces MusA,BF , muscle pressures A,Bp , muscle contractions A,Bκ , 

gravitation force gF , angle between inertial position and horizontal plan 0ϕ , length of the joint 
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l  and disturbance force sF  (assumed that it is always orthogonal to the joint). ϕ  should be 
equal zero for the joint position where both muscle have the same contraction length. 

  
Fig. 2. (left) Schematic joint driven by pneumatic msucles. (right) Static correlation between force, 

pressure and contraction [5]. 

 

There is a linear correlation between the joint angle and the contraction of the muscle if the 
tendons between muscle and joint are tensed, so the contraction can be calculated with the help 
of the joint-angle: 

A A 0 B B0

A 0 B0

r r
( ) ( ), ( ) ( )

l l
κ ϕ = ϕ − ϕ κ ϕ = ϕ − ϕ  (2) 

A0,B0ϕ  are the joint angles where the muscle have there initial length 0l . 

2.1 Equation for force and pressure of the muscle 

The fluidic muscle can be modelled as a spring and a parallel damper. The force of the muscle 

MusF  is correlated with the relative muscle pressure p , the contraction κ  and the derivative of 
the contraction κ&  of the muscle (see Fig. 2). 

Mus spring damperF ( , ,p) F ( ,p) F ( ,p).κ κ = κ + κ& &  (3) 

with  

damper D n

2 p 2

spring 0 0

F ( ,p ) C (p P )

F (p, ) ( r ) p (a (1 (a e b ) ) b) ( ) ( f )−

ε ε

κ = − ⋅ + ⋅ κ

κ = µ ⋅ π ⋅ ⋅ ⋅ ⋅ − ⋅ + ⋅ κ − + σ − κ ⋅ − ⋅ κ

& &
 (4) 

The different parameters of the equations are the damping coefficient DC , absolute ambient 

pressure NP , correction value µ , muscle radius 0r , geometric muscle parameter a ,b , muscle 

force correction parameter aε , bε  and the correction parameter 0f  for 0p = . 
 
The pressure in the muscle can be calculated by the following equations:  

air air Mus
Mus N Mus N air 2

Mus Mus Mus

V V V
P P P P V

V V V
= ⋅ ⇒ = ⋅ − ⋅

 
 
 

& &
&  (5) 
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.

airV  can be found with the help of the Bernoulli-equation:  

air V a V 0V f C A (P P).= ⋅ ⋅ ⋅ −&  (6) 

Two cases must be distinguished:  
• Filling: Vf 1= , 0P = absolute pressure of the gas storage, MusP P= .  

• Emptying: Vf 1= − , 0 MusP P= , NP P= .  

aC  is an aerodynamic correction factor. The area of the valve VA  is proportional to the airflow 

to the muscle. The Muscle volume MusV  is correlated with the contraction of the muscle and the 

initial muscle length 0l . It can be approximated by:  

Mus 0 0 Mus 0V ( ) a(l ) b(l ) V ( ) a(l )κ = ⋅ κ + ⇒ κ = ⋅ κ& & &  (7) 

The amount of air volume in the muscle under normal pressure can be calculated by:  

Mus
air Mus

N

P
V V ( )

P
= κ ⋅  (8) 

The differential equation resulting for the muscle -pressure is:  

V a V 0 Mus
Mus N Mus

Mus Mus

f C A (P P) V ( )
P P P .

V V ( )

⋅ ⋅ ⋅ − κ
= − ⋅

κ

& &&  (9) 

2.2 Model for High-speed switching valve 

The switching valves used to control the muscle pressure have three possible states:  
1. closed: no airflow;  
2. opened for filling: max. opening area for airflow into the muscle; 
3. opened for emptying: max. opening area for airflow out of the muscle.  

The valves operate with pulse width modulation (PWM). For a given input u  the valve 
activation can be calculated:  

V
max

u
A sign(u) rect t,

u
= ⋅

 
 
 

. (10) 

maxu  is the biggest possible input  and  

max PWM PWM

PWM PWM

V for k T t (k e) T
rect(t,e)

0 for (k e) T t (k 1) T

⋅ ≤ < + ⋅
=

+ ⋅ ≤ < + ⋅





&
 (11) 

with 0 e 1≤ ≤ , the pulswidth PWMT , 
PWM

t

T
k floor

 
=  

 
.  
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2.3 State equation 

For the description of the whole dynamics the state equation for nonlinear systems is used. State 
variables are: 1 Ax p= , 2 Bx p= , 3x = ϕ  and 4x = ϕ& . The input variables are 1 VAu A=  (opening 

area valve A) and 2 VBu A=  (opening area valve B). The following state equation (shown only 

for the case of filling the muscle) ( 0 A0 B0ϕ = ϕ = ϕ ) is found: 

MusA 4
V a 1 C 1 0

N 1

MusA 0 3 MusA 0 3

0 0

MusB 4
V a 2 C 2 0

N 2

MusB 3 0 MusB 3 0
0 0

4

MusA 0 3

0

r
V x

f C u (P x ) l
P x

r r
V ( x ) V ( x )

l l

r
V x

f C u (P x ) lx
P x

r rV (x ) V (x )
l l

x

1 r r
r F ( ( x ),

J l

− ⋅
⋅ ⋅ ⋅ −

− ⋅

⋅ ϕ − ⋅ ϕ −

⋅
⋅ ⋅ ⋅ −=

− ⋅
⋅ − ϕ ⋅ − ϕ

⋅ − ⋅ ⋅ ϕ − −

 
 
 

   
   
   

 
 
 

   
   
   

&

&
&

4 1 MusB 3 0 4 2 3 0 g

0 0 0

r r l
x , x ) r F ( (x ), x , x ) cos(x ) F

l l l 2
⋅ + ⋅ ⋅ − ϕ ⋅ − − ϕ ⋅ ⋅

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
     

 

( )1 2

T
3y x x x=  (12) 

3. Simplified model of a joint driven by fluidic muscles 

For the design of different controllers a linearization of the nonlinear-system was necessary. For 
this the working point T

APx (3bar,3bar,0,0)=  and the constant input variable Tu (0,0)=  are 
used. One can also use the following simplified model for the muscle-force to receive a more 
linear behaviour:  

Mus 1 2 3 dF (p, ) c p c c c .κ = ⋅ + ⋅ κ + − ⋅ κ&  (13) 

The parameters 1c 193= , 2c 50= −  and 3c 229=  were estimated with the help of the least-

square-method. In the damping part of the muscle -force equation DC  was multiplied with the 

working point pressure 3 bar so we got Dc 6.9= .  
The main linearization is done by a Taylor series at the working point. Finally the following 
linear state equation is found:  

A 2 A1

B2 B1

1 2 3 4

0 0 0 0
0 0 0 0

x x u.
0 0 0 1 0 0

0 0

µ µ   
   µ µ   = ⋅ + ⋅
   
     µ µ µ µ   

&  (14) 

0 0 1 0

y 1 0 0 0 x
0 1 0 0

 
 = ⋅ 
 
 

 (15) 
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with 
( )N 0 V a C AP1

A1
0 0 0 0

P l f C P x

a(l ) r b(l ) l

⋅ ⋅ ⋅ ⋅ −
µ =

⋅ ⋅ ϕ + ⋅
, 

( )N 0 V a C AP2
B1

0 0 0 0

P l f C P x

b(l ) l a(l ) r

⋅ ⋅ ⋅ ⋅ −
µ =

⋅ − ⋅ ⋅ ϕ
 

AP1 0
A2

0 0 0 0

x a(l ) r
a(l ) r b(l ) l

⋅ ⋅
µ =

⋅ ⋅ϕ + ⋅
, AP2 0

B2
0 0 0 0

x a(l ) r
b(l ) l a(l ) r

⋅ ⋅
µ = −

⋅ − ⋅ ⋅ ϕ
 

1
1

r c
J
⋅

µ = − , 1
2

r c
J
⋅

µ = , 
2

2
3 0 g

0

2 c r l
sin( ) F

J l 2 J
⋅ ⋅

µ = + ϕ ⋅ ⋅
⋅ ⋅

 and 
2

D
4

0

2 r c
l J
⋅ ⋅

µ = −
⋅

.  

4. Modelling and control of the elastic joint using the EICAS-Lab software 
tool 

The control design is carried out according to the EICAS methodology that allows guaranteeing 
the required performance in presence of disturbances and uncertainty in the plant. 

 
Fig. 3. Plant control design of the joint control using EICAS methodology 

 
A feedback control is designed on the basis of the "simplified model", without considering the 
plant-model uncertainty. In order to get the best control performance, the plant control is 
typically designed according to the scheme of Fig. 3 including: 

• the estimation of future equivalent additive disturbances acting on the plant inputs so 
that their effect can be directly compensated. This action is computed by means of the 
“state and disturbance observer”, together with the estimation of the state values, 

• an open loop control action, which is computed by means of the “reference generator”, 
together with the required state values, 

• the feedback state control, computed by the “closed-loop control”. 
Then the total command is composed of three contributes: the open loop command, the 
compensation of disturbances and the closed-loop command. 
The plant control architecture related to PANTER test case is shown in Fig. 4, realised by means 
of EICASLAB. 
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Fig. 4. Control design in EICASLAB for a compliant joint 

 

The control realised for the compliant joint is a hierarchical control (see Fig. 5) composed of : 
 

• one position control, 
• two pressure controls. 

 
Fig. 5. Hierarchical Control for a compliant joint in EICASLAB 

 

The position control has as input the measured position and the reference one and provides as 
output the reference pressures for the pressure controls, that compute the commands for the 
muscles. 
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Fig. 6. Position Control for a compliant joint in EICASLAB 

 

The position control and the pressure control structures are shown respectively in Fig. 6 and in 
Fig. 7. 

 
Fig. 7. Pressure Control for a compliant joint in EICASLAB 

 

The control is tuned and its performance assessed by means of the EICASLAB simulator, where 
the fine model is used to simulate the plant. In this way the control immediately works well, 
without requiring set up in field. The simulation results are shown in Fig. 8. 
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Fig. 8. Simulation results of the joint control using EICASLAB SIM 

 

5 Conclusion and outlook 

This paper presents the model and control of a joint driven by fluidic muscles. This control was 
implemented and simulated with the professional software tool named EICASLAB. For the 
implementation on the real robot PANTER the controller will be adapted for the microcontroller 
boards used to control the robot. This can be done also with the help of the EICASLAB 
software by using the automatic code generation function of the tool. 
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