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Abstract 

  “Simulation” is a word covering many design and analysis tools used in industrial design  
processes. A class of simulation models for “realistic” industrial robot simulation will be pre-
sented. It is intended as a tool for the development and the design of industrial robot automatic 
control systems. We will discuss the physical meaning of this class of models, and the reliability 
of the simulation results against real robot behavior. We introduce some simple concept and tool 
to verify if the simulation model could be accepted as a “virtual robot prototype”. During the 
ACODUASIS project, the simulation model was implemented in EICASLAB as a system “fine” 
model to design and verify independent motor position servo controllers. 
 
Keywords: “fine” model development for servo control design purposes, not rigid robot model-
ing, robots with elastic joints, robot model identification, realistic robot simulation. 

1 Introduction 

Automatic control system analysis, design and assessment is our purpose for realistic robot 
modeling and simulation. The first part of the work is devoted to introduce a “simple” model for 
not rigid robot: the elastic joints (EJ) robot model. We will discuss the reasons for introducing 
some approximation and assumptions. With some field results, we will see that the EJ modeling 
is still good enough for industrial robots. The EJ model is object oriented and in the second part 
of the work we will show some simulation results and will compare them against real behavior. 

2 Not rigid robots and model complexity 

The model proposed represents a not rigid machine, typical feature of industrial robots and key 
factor to understand robot application state of art. Taking the joint motor current 

miI  as input 

variable, the plant shows anti resonance/resonance behaviour on motor velocity 
miθ&  (see Fig.6 as 

a typical experimental frequency plot) and pure resonance on link (joint) velocity 
iq& . These 

resonances brings in vibrations (complex poles) with very low dumping factor and frequency 
that changes with load condition (inertia). These resonance frequencies are usually lower than 
20 Hz (for high load conditions can be lower than 5…10 Hz). This gives “bandwidth” and per-
formance limitations. The dynamic model must be accurate in the frequency range from 0 to 
100 Hz. This fact defines the detail and the complexity level of the simulation model. 
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2.1 Why elastic joint (EJ) modeling for industrial robots 

In industrial robots the elasticity effects are introduced by three main causes: 
o the presence of transmission elements such as: � gearboxes and transmission belts, � long shafts ( e.g., last 3-dofs of many industrial robots ),  

introduce elasticity effects between actuating inputs and driven outputs. 
o Distributed link deformation always introduce elasticity effects: ‘link rigidity’ is always 

an ideal assumption and may fail when increasing payload-to-weight ratio, motion 
speed, control bandwidth. 

o The presence of parasitic degrees of freedom, due to non ideal behaviour of complex 
mechanical structures, introduce parasitic elastic joints with parasitic resonances effects. 

2.1.1 Elasticity effects in transmissions  

Industrial gearboxes and transmissions are complex mechanical systems. The presence of multi-
ple reduction stages can introduce multiple resonances. Since the gear inertias are much smaller 
than the applied load inertia the induced high frequency resonances may be neglected. The gear 
elasticity usually introduces one dominant low frequency resonance. We assume gear elasticity 
as concentrated in the joint and represented with one spring. Gear and transmission inertias par-
tially contribute to the equivalent motor inertia as they appear as rigidly linked to the motor 
shaft. Long transmission shafts are internal to one of the links and contribute, as were at rest, to 
the link tensor of inertia, mass and barycentre ( see “rigid” body mass properties ). Meanwhile 
they add additional inertial and friction torques because are not at rest at all. These effects can 
be modelled in the elastic transmission model as inertia and friction blocks added both to the 
motor (gear input) shaft and to the load (gear output) shaft. 

2.1.2 Distributed link deformation 

Distributed link deformation can be modelled as an Euler-Bernoulli beam in rotation [1]. The 
beam (Fig. 1) has length L, uniform density ρ, Young modulus · cross-section inertia EI, actua-
tor inertia J0, payload mass mp and inertia Jp; reference frames: (X, Y ) absolute; (x, y) moving 
with instantaneous centre of mass CoM. These are assumptions and definitions: 

o beam undergoes small deformations of pure bending type in the plane of motion  
o (no torsion or compression) 
o bending deformation w(x, t), with x ∈ [0, L], is directed along the y direction 
o rotational inertia of beam sections is neglected  

Other relevant angular variables are: 
o position θ(t) of the CoM (not measurable, but convenient); 
o position θc(t) of the tangent to the link base ( measurable gear output shaft ); 
o position θt(t) of a line pointing to the beam tip (measurable in several ways). 

 
Fig. 1. Euler-Bernoulli beam in rotation 
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We assume that:  
 

A1) the difference θt(t)-θc(t) is small compared to θ(t)-θc(t) and we introduce the rough 
straight line approximation of the beam bending deflection: the link is still considered as 
rigid with position θ(t) of the CoM.   θ(t)-θc(t) is considered tangent to the link base and 
is added to the transmission elasticity deflection. Link bending and gear deflection will 
be represented as an elastic joint linking the actuator output shaft to a rigid link.  

2.1.2 Parasitic resonances  

Parasitic joint model represent unexpected elastic deformations concentrated in some part of the 
robot link chain. Not ideal mechanical constraints can originate parasitic joints. These EJ are re-
sponsible for resonance modes not introduced by actuated EJ. We introduce the extended higher 
order dynamic model with both actuated and parasitic EJ. In Fig.2 the block diagram of the in-
teraction (linear model approximation) between an actuated and a parasitic EJ is shown. The in-
teraction is introduced by elements of the extended model inertia matrix. We will show an ap-
plication of this model for a joint stiffness (link bending + gear deflection) identification.  

 
 Fig. 2. interaction between parasitic and actuated EJ 

2.2 EJ Robot dynamic modeling 

To introduce the EJ robot dynamic model, we consider [2]: 
o an open-chain robot with N (rotary or prismatic) elastic joints and N rigid links, driven 

by electrical actuators;  
o motor variables �� ���(as reflected through reduction ratios) and link variables ��� ���

as generalized coordinates; (���� represents both the gear and the link bending deflec-
tions and � defines the positions of link centers of mass; 

 
Standing assumptions: 

o A2) small displacements at joints (linear elasticity domain); 
o A3) axis-balanced motors (i.e., centre of mass of rotors on rotation axes); 
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Fig. 3. EJ model for a two links planar robot 

 
o link kinetic energy and link potential energy due to gravity (including the mass of each 

motor as additional mass of the carrying link) 
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with symmetric, positive definite inertia matrix M(q); 
o potential energy due to joint elasticity 
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with diagonal, positive definite joint stiffness matrix K; 
o A4) simplifying assumption (Spong, 1987): angular kinetic energy of each motor is due 

only to its own spinning with diagonal, positive definite motor inertia matrix J (re-
flected through the reduction ratios: Ji = Jmi r
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o system is Lagrangian and the Lagrangian L satisfies the usual vector equations: 
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being u � ��� the non-conservative forces/torques performing work on p. Adding to the model 
the dissipative terms, the elasticity internal damping and the diagonal matrix Ntr for joint reduc-
tion ratios, we obtain three equations (link, joint transmission and motor equation ): 
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Kt is the diagonal matrix of motor current to torque gains, ��� �� represent the motor current 
vector. Electrical drive dynamic shows very high frequency dominant poles not taken in ac-

count. We consider Im as the system control input. The vector ��� ��� is the usually measured 
output ( motor shaft mounted encoder/resolver position sensor ), while q is the usually not 
measured but more appropriate system output.  The equations (5) introduce a more general class 
of industrial robot models. With these  object oriented models  it  is  possible  to represent also 
closed-chain robots (with multiple loops) and mechanically coupled joint transmissions: 
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2.3 Standing assumptions and field results 

Assumptions A3) and A4) hold for industrial robots. To show A1) and A2) usually hold, we 
shortly introduce and discuss some field results. Many works and textbooks have been pub-
lished dealing with “rigid” robots dynamic parameter identification (see [3],[4]). For this reason 
methods for the development and parameter identification of the first rigid link equation (5) are 
not outlined here. We focus our attention on stiffness matrix K identification. To do that, we get 
linear model approximation for model (5):  

o we assign to the joint positions q some fixed nominal values q0, 
o we consider small velocity condition 0≈q& , 
o we consider gravity and not linear friction as exogenous disturbances for linear m. 

From (5) we get: 
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M(q0) introduce coupling in the system. For each joint i, i = 1,...,N, a joint positions set Q0 exist 
such that:                    jiqMqMQq iiji ≠<<⇒∈ ),()( 0000                  (8) 

For q=q0, the matrix M(q0) is almost diagonal for joint i ([5],[6]), joint i is almost decoupled and 
it is possible to identify a 

miI to 
miθ&  low order transfer function. From the identified tr. f., pro-

vided that the M(q0) is known, it is possible to get good estimate of the element Kii of diagonal 
stiffness matrix as solution of a not linear curve fitting problem. If 

00 Qq ∉ , it is, anyway, possi-

ble to get good joint decupling effect (see [6]) by suitable independent joint servo control design 
and tuning (actuated joint mechanical resonance damping).  
 
In Fig.4 (left) we see the stiffness measurement set-up (ax 1 of a COMAU NHJ 370-2.7). An al-
ternating torque of max amplitude 9358.74 Nm is applied by a force F = 3924 N applied at a dis-
tance b=2.385 m. Distributed deformation has been considered (deflection measured near the 
TIP).  The diagram in Fig.4 (right) shows that dead zone model plus stiffness linear model ap-
proximation (dash line) still hold. Assumption  A2) can be relaxed: linear model roughly hold 
for “large” ( 0.004 Rad ) displacements. The linear stiffness value is K= 2751760.18 [Nm/Rad].   
Deflection at joint base (transmission output) has been measured: Kbase= 9991068.0 [Nm/Rad]. 
The distributed arm deformation can be modelled by equivalent additional stiffness Kdad = 
3796605.85 [Nm/Rad] and take over the transmission stiffness. Assumption A1) roughly still 
hold for modelling ax1. 
Fig.5 show ax1 linear (closed loop) identification model and the related mechanical model fit. 
The Bode plot of current

1mI to motor speed 
1mθ& tr. f. shows the low frequency mode (4 Hz) in-

duced by joint 1 elasticity. The reduced 3rd order model zero frequency is a function of stiffness: 

)( 0
1

111 qMKar
−⋅=ω . To fit the identified tr. f. as a frequency domain function of mechanical 

parameters (as actuated EJ stiffness K1 and parasitic EJ stiffness Kp), we used the 5th order 
model depicted in Fig.2 and a Simplex based least square fitting procedure (see [6] for details).  
The K1 estimated value (see Table 1) is quite close to the measured one (Fig.4). Since these are 
archetypal results for industrial robot modeling, (7) and the related not linear class of models (5) 
can be considered “good enough” tools for system analysis and realistic simulation. 
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Fig. 4. left: ax1 (static) stiffness measurement set-up – right: joint deflection vs. applied torque diagram 

 
Fig. 5. NHJ 370-2.7: ax1 current

1mI to motor speed 
1mθ& transfer function  

Table 1. Mechanical parameters estimate 

Main physical parameters Value             Unit 
M11(q0) 3715.2411      Kgm2 
K1 2742905.5      Nm/Rad 
Kp 424341.7        Nm/Rad 
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3 Sample simulation results 

Simulation results for COMAU NM 45-2.0 robot are reported. It is a 6 degree of freedom, open 
chain robot for payload up to 45 Kg with 2.0 m reach. NM is a robot both for manipulation and  
technological and accurate processes. NM model shows 6 actuated EJ and 2 main parasitic EJ. 
The simulation is related to the execution of  the Smith’s path. This ISO test path, laying on X-
Y plane, is intended for checking accuracy in high speed, “fly” type move execution. Reference, 
real and simulated 3D space trajectories are reported relative to x-y plane (Fig.6), x-z plane and 
y-z plane (Fig.7). For the simulation we did not used the extended 8 degree of freedom (6 EJ 
and 2 parasitic EJ ) and did not use static friction simulation (only columbic and viscous friction 
simulation blocks were used ). Simulation results are anyway quite realistic in this case. 

 
Fig. 6. left: COMAU NM 45-2.0 - right: Smith’s cycle XY plane results (most significant details) 

 

 
Fig. 7. Smith’s cycle XZ and YZ plane simulation results (most significant details) 
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3.1 Software implementation examples 

The model class (5) is a general concept. In 2002 COMAU Robotics started to develop for in-
ternal use an object oriented Matlab-Simulink Robotics Library implementing this class (Fig.8 
left). During the ACODUASIS Project (funded by the European Community in the period 
2003-2005, under the specific research and technological development programme “Promotion 
of innovation and encouragement of SME participation”) the same object oriented library con-
cept was transferred (Fig.8 right) into the robotics oriented version of EICASLAB, advanced 
simulation and control design software tool (EICAS Automazione s.p.a., 2005).  
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Fig. 8. left: COMAU NM 45-2.0 simulator – right: EICASLAB: the Robotics Library 

 
With these object oriented libraries, the user has the possibility to describe completely the cine-
matic and dynamic behaviour of an industrial robot, composed by a generic chain of links, 
joined by prismatic or rotational joints, and structured in an open or closed loop chain. The de-
scription of the robot is just a parametrical description (object attributes specifications) and no 
code must be written (object methods already defined). It is possible to do simulation and 
evaluation of robot performance both in the joint coordinates space and in the Cartesian space. 
NM simulation results have been obtained using the COMAU Robotics Library.  
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